
Final Exam Study Guide

Introduction to Algorithms

Fall 2014

Chapter 22: Elementary Graph Algorithms

 Graph Representation:

o Adjacency lists.

o Adjacency matrix.

 Breadth-first search Algorithm:

o Input: Graph G= (V, E), either directed or undirected, and a source vertex sϵ V.

o Output: d[v]= distance (smallest # of edges) from s to v, for all vϵ V. also Π[v] = u such

that (u , v) is last edge on the shortest path s v

o Running time = O (V+E):

 O (V) because every vertex enqueued at most once.

 O€ because every vertex dequeued at most once and will examine (u,v)

only when u is dequeued. Therefore, every edge examined at most once

if directed, at most twice if undirected.

 Depth-first search

 Input: G = (V, E), directed or undirected. No source vertex given!

 Output: 2 timestamps on each vertex:

 d[v] = discovery time.

 f [v] = finishing time.

Will methodically explore every edge. Start over from different vertices as necessary.
As soon as we discover a vertex, explore from it. Unlike BFS, which puts a vertex on a

queue so that we explore from it later. As DFS progresses, every vertex has a color:

 • WHITE = undiscovered

• GRAY = discovered, but not finished (not done exploring from it)

• BLACK = finished (have found everything reachable from it)

Discovery and finish times:

• Unique integers from 1 to 2|V|.

• For all v, d[v] < f [v].

In other words, 1 ≤ d[v] < f [v] ≤ 2|V|.

Classification of edges
• Tree edge: in the depth-first forest. Found by exploring (u, v).

• Back edge: (u, v), where u is a descendant of v.

• Forward edge: (u, v), where v is a descendant of u, but not a tree edge.

• Cross edge: any other edge. Can go between vertices in same depth-first tree or in

different depth-first trees.

Time: Ɵ (V + E).

Chapter 23: Minimum Spanning Trees

 Kruskal’s Algorithm :

 G = (V, E) is a connected, undirected, weighted graph. w: E → R.

Running time: O (E log V)

 Prim’s Algorithm :

 Builds one tree, so A is always a tree.

 Starts from an arbitrary “root” r.

 At each step, find a light edge crossing cut (VA, V − VA), where VA = vertices that A is

incident on. Add this edge to A.

Running time O(E log V).

Chapter 24: Single-Source shortest Paths:

 Shortest paths :

Cycles:

 Shortest paths can.t contain cycles:
• Already ruled out negative-weight cycles.

• Positive-weight ⇒we can get a shorter path by omitting the cycle.

• Zero-weight: no reason to use them ⇒ assume that our solutions won.t use them.

Initialization:
All the shortest-paths algorithms start with INIT-SINGLE-SOURCE.

Relaxing an edge (u, v)

 Bellman-Ford Algorithm :

o Allows negative-weight edges.

o Computes d[v] and π[v] for all v ∈ V.

o Returns TRUE if no negative-weight cycles reachable from s, FALSE otherwise.

 Dijkstra’s Algorithm :

o No negative-weight edges.
o Essentially a weighted version of breadth-first search.
o Instead of a FIFO queue, uses a priority queue.
o Keys are shortest-path weights (d[v]).

o Have two sets of vertices:

 S = vertices whose final shortest-path weights are determined,

 Q = priority queue = V − S.

Running time: O(E lg V) , if binary heap

